Characterization of a Pt-core PZT Fiber/Al Matrix Composite
نویسندگان
چکیده
The objective of this study is to design and characterize a piezoelectric composite and evaluate its suitability for viscosity-measuring applications, i.e., monitoring the coagulation rate of blood. The composite is manufactured of a platinum-core lead zirconate titanate (PZT) fiber inserted into an aluminum matrix. This study characterizes the described composite by testing its impedance, capacitance, voltage sensitivity response to vibrational inputs, and deformation due to electrical input. As actuators, different voltage inputs are fed into the probes and displacement is measured with results on the range of nanometers. As sensors, the devices are used to monitor cantilever beam vibrations. The probe’s response is in the mV range and follows the same pattern as an accelerometer. Additional tests in air, water, and deionized water are carried out to evaluate the sensor’s suitability for measuring viscosity using two probes: one as an actuator and the other as a sensor. Results of the gain and phase between the two probes indicate that the phase shift may be used as an indicator of viscosity changes. The first significant phase shift was measured as 2.45, 2.77, and 4.065x10Hz, for water, air, and oil, respectively, which is directly proportional to the kinematic viscosity of each fluid.
منابع مشابه
CHARACTERIZATION OF SHORT E-GLASS FIBER REINFORCEDGRAPHITE AND BRONZE FILLED EPOXY MATRIX COMPOSITES
The mechanical characterization of short E- glass fiber reinforced, graphite and sintered bronze filled epoxy composite was carried out in this study. The aim of the present study was to develop tribological engineering material. In this study the flexural strength, theoretical and experimental density, Hardness and Impact strength of composites was investigated experimentally. The results show...
متن کاملAnalytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs Under Non-axisymmetric Internal Pressure
In this study, two-dimensional electro-mechanical analysis of a composite rotating shaft subjected to non-axisymmetric internal pressure and applied voltage is investigated where hollow piezoelectric shaft reinforced by boron nitride nanotubes (BNNTs). Composite structure is modeled based on piezoelectric fiber reinforced composite (PFRC) theory and a representative volume element has been cons...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملCharacterization of Bending Fracture of Stress Biased Piezoelectric Composite Actuators by Acoustic Emission
In this work, the bending fracture process of a stress biased piezoelectric composite actuator (PCA) under a three-point bending load have been characterized with the aid of acoustic emission (AE) monitoring. The AE signal from the monolithic PZT wafer at the maximum bending load shows the characteristics of high amplitude and long duration with a low dominant frequency band confirmed by a fast...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010